ar X iv : h ep - t h / 93 10 02 5 v 1 5 O ct 1 99 3 ENERGY - MOMENTUM CONSERVATION IN GENERAL RELATIVITY

نویسندگان

  • Dongsu Bak
  • R. Jackiw
چکیده

We discuss general properties of the conservation law associated with a local symmetry. Using Noether's theorem and a generalized Belinfante symmetrization procedure in 3+1 dimensions, a symmetric energy-momentum (pseudo) tensor for the gravitational Einstein-Hilbert action is derived and discussed in detail. In 2+1 dimensions, expressions are obtained for energy and angular momentum arising in the ISO(2, 1) gauge theoretical formulation of Einstein gravity. In addition, an expression for energy in a gauge theoretical formulation of the string-inspired 1+1 dimensional gravity is derived and compared with the ADM definition of energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 97 02 24 5 v 2 1 7 O ct 1 99 7 The Static Potential in QCD – a full Two - Loop Calculation ∗

A full analytic calculation of the two-loop diagrams contributing to the static potential in QCD is presented in detail. Using a renormalization group improvement, the “three-loop” potential in momentum space is thus derived and the third coefficient of the β-function for the V -scheme is given. The Fourier transformation to position space is then performed, and the result is briefly discussed.

متن کامل

ar X iv : h ep - t h / 93 09 03 5 v 1 7 S ep 1 99 3 Graphical Representation of Invariants and Covariants in General Relativity

We present a grapical way to describe invariants and covariants in the (4 dim) general relativity. This makes us free from the complexity of suffixes . Two new off-shell relations between (mass)∗∗6 invariants are obtained. These are important for 2-loop off-shell calculation in the perturbative quantum gravity. We list up all independent invarians with dimensions of (mass)∗ ∗ 4 and (mass)∗∗6. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993